
Lecture 24:
Build systems and

dependencies
CS 5150, Spring 2025

Administrative Reminders

• In class exam 2: Topics Lecture 14-24 (today)

2

Previously in 5150…

3

Dependencies

4

Internal vs. external dependencies

Internal

• Maintainers' goals are
(hopefully) aligned

• Can audit for all uses of a library

• Can coordinate large-scale
changes of all code using library
(facilitated by monorepo)

• Can manage with source control
tools, policies

External

• Cannot assume coordination
between library and users

• Cannot enforce compatibility,
maintenance policies

• Cannot control release schedule

• Danger of diamond dependency
problem

• Domain of dependency
management

5

Where to get dependencies from?

• Defer to users / distributors
• E.g., List of Debian packages to install
• Common for libraries, system

software (C/C++); often used for
"standard" dependencies

• Build system should confirm that
dependencies are satisfied

• May assume elevated privileges, may
mask portability

• "Vendoring"
• Copy third-party source code

(or artifacts) into your
repository

• Increases project size, hard to
maintain

• Artifact repositories
• Download binary artifacts and

their transitive dependencies
• E.g., Maven Central, PyPi

(Python), Debian packages

• Source code repositories
• Download the source code and

compile locally
• E.g., Cargo.io, BSD ports, npm

• Private Cloud Registry

6

Dependency Management Practices

• Version pinning: select the exact dependency version
• But only applies to direct dependencies
• Problems?

• Signature and hash verification

• Lockfiles: pinning+sig/hash verification for full dependency tree
• Compiles all dependencies and sub-dependencies (entire dependency tree)
• Better reproducibility and consistency

• Dependency confusion attack: publishing projects with the same
name as an internal project to open-source

• Vulnerability scanning: scan lock files to check the artifact versions

https://cloud.google.com/blog/topics/developers-practitioners/best-practices-dependency-management
7

https://cloud.google.com/blog/topics/developers-practitioners/best-practices-dependency-management

Supply Chain Attack (Example)

• https://pytorch.org/blog/compromised-nightly-
dependency

• PyTorch-nightly Linux packages installed via pip
during that time installed a dependency, torchtriton,
which was compromised on the Python Package
Index (PyPI) code repository and ran a malicious
binary. This is what is known as a supply chain attack
and directly affects dependencies for packages that
are hosted on public package indices.

• A malicious dependency package (torchtriton) that
was uploaded to the Python Package Index (PyPI)
code repository with the same package name as the
one shipped on the PyTorch nightly package index.

• This malicious package was being installed instead of
the version from the official repository.

• This malicious package contains code that uploads
sensitive data from the machine.

8

https://pytorch.org/blog/compromised-nightly-dependency
https://pytorch.org/blog/compromised-nightly-dependency
https://download.pytorch.org/whl/nightly

Repository mirrors

• Depending on public repositories is risky
• What if their servers are not available?

• What if packages are removed?

• Do you trust that an artifact will never change?

• Does your employer's firewall block binaries? Do they need to scan for
viruses?

• Can point build tools to an internal repository mirror, rather than the
public Internet
• Tradeoff between maintenance and control

9

Diamond dependency problem

• Consider an application that
uses a computer vision library
and a GUI toolkit

• Suppose the CV library depends
on libpng-1.4, but the GUI
toolkit is linked against libpng-
1.2. These versions are
incompatible

• What version of libpng can your
application link against?

10

Diamond dependency problem

• Solutions:
• Downgrade a library
• Upgrade both (Delta

debug ☺)
• Manually patch

11

Dependency management

• What versions of dependencies should you import?

• When should you upgrade dependency versions?

• SwE@Google book outlines four options:
1. Never upgrade

2. Semantic versioning

3. Bundled distributions

4. "Live at HEAD"

12

Never upgrade (Static Dependency Model)

• Predictable
• Avoids failures due to changes outside of your control

• Natural when starting out, or for short-lived projects
• Compatible with "vendoring"

• What happens when a dependency has a security vulnerability?

• What happens when a new dependency depends on newer versions
of old dependencies?

13

Bundled distributions

• Defer dependency management to the distribution maintainer
• Responsible for maintaining compatibility while incorporating security updates

• Depend on the bundle and whatever dependency versions it provides
• Common for commercial applications

• Example:
• Linux distributions: Debian (non-commercial), Fedora Linux (Red Hat), OpenSUSE
• Android, ChromeOS: Built on Linux Kernel
• More niche: Raspberry PI OS

• Distributors: responsible for finding, patching, and testing a mutually compatible
set of versions to include.

• Limitations:
• Limits (verified) portability
• Can't leverage latest features

14

Linux Distributions

• Typically includes
• Linux Kernel

• Package manager

• Init system

• GNU tools

• Networking

• GUI

• …

15

Semantic versioning (SemVer)

• Dependency version numbers obey MAJOR.MINOR.PATCH format
• Changes to PATCH should be fully compatible (bug fixes, security fixes)
• Changes to MINOR may add functionality in a backwards-compatible manner
• Changes to MAJOR indicate API changes (potentially breaking)

• Assumed by many build tools
• Depend on a specific MAJOR version and a minimum MINOR version

• Challenges
• Not all dependencies follow this scheme
• Human maintainers make mistakes
• Hyrum's Law: one person's "bug" is another's "feature"
• Can be over-constraining (no solution to SAT problem)

• Heuristics for relaxing some requirements

16

Hyrum’s Law

“With a sufficient number of users, every observable behavior of your
system will be depended upon by someone”

• SemVer’s patch versions may not be “safe” (beyond input-output spec
of an API)
• Adding a delay in time-sensitive API

• Logging format changes

• Change order of results in a stream

• Changing the order of importing dependencies…

• Many of these patches can be “breaking”

17

SemVer works when…

• Your dependency providers are accurate and responsible (to avoid
human error in SemVer bumps)

• Your dependencies are fine-grained (to avoid falsely over-constraining
when unused/unrelated APIs in your dependencies are updated, and
the associated risk of unsatisfiable SemVer requirements)

• All usage of all APIs is within the expected usage (to avoid being
broken in surprising fashion by an assumed-compatible change, either
directly or in code you depend upon transitively)

Hard to satisfy these when operating at large (Google) scale…

18

Minimum Version Selection (MVS)

• SemVer: Chooses the newest possible versions of dependencies that
satisfy requirements

• MVS: Select the lowest satisfiable version

• Intuition: Produce high-fidelity builds in which dependencies are as
close as possible to what the developer used

• Proposed by Russ Cox for Go: https://research.swtch.com/vgo-mvs

19

https://research.swtch.com/vgo-mvs

PollEv.com​/cs5150sp25: Which version would
you upgrade to?
You are maintaining a Java web service that uses the library json-utils
for parsing and generating JSON. Your current version is: 2.4.1

Upgrade reason: Your team needs better performance when serializing
large JSON payloads, especially due to recent load testing that revealed
bottlenecks. You heard that newer versions have optimized this.

20

Version Change Type Release Notes Summary

2.4.2 Patch Fixed a memory leak in edge-case deserialization. No API changes.

2.5.0 Minor
Improved JSON serialization performance by 30%. Backward-
compatible.

3.0.0 Major
Rewritten core APIs; significantly faster, but deprecated several
classes and changed behavior for null values.

3.1.0 Minor
Adds new streaming APIs and improves documentation. Still same
breaking changes as 3.0.0.

https://pollev.com/cs5150sp25

Compatibility

API

• Names of public functions and
data types

• Recompilation should succeed
• May be required to incorporate

updates

ABI (Application Binary Interface)

• Function calling conventions

• Data structure layout

• Instructions, inlined system
functions

• Dependent code does not need
to be recompiled to incorporate
updates

21

Compatibility

Backward compatibility

• Code that worked with an older
version of a dependency will work
with a newer version
• Preserved across MINOR versions

• Implies that public types and
functions cannot be removed

• For ABI compatibility, public data
structures cannot change outside
of "reserved" fields

Forward compatibility

• Code built with a newer version of
a dependency will also work with
an older version
• Preserved across PATCH versions

• Implies that no new public types,
fields, or functions may be added

22

"Live at HEAD"

• Dependency management analogue of trunk-based development

• Principles:
• Always depend on current stable version of everything

• Never change anything in a way that is difficult for dependents to adapt

• Dependency maintainer responsible for not breaking all users
• Effectively requires continuous integration for all software in the world

(except closed-source dependents)

• If compatibility cannot be maintained, maintainer will provide an upgrade
tool

• API providers: Ensure smooth migration; API consumers: Provide
tests

23

"Live at HEAD"

• Some of this infrastructure already exists
• "Rolling" Linux distributions (e.g., Gentoo) integrate tens of thousands of

packages continuously

• Programming languages (e.g. Scala, Rust) proactively test all changes against
major libraries/applications

• Version selection: What is the latest stable version of everything?

24

Dependency vulnerabilities

• NPM has a history of
dependency-related disasters
• left-pad unpublished

• Bitcoin theft transitive
dependency in event-stream

• Ukraine war "protestware" in
node-ipc

• Why was impact so large?
• Tools depended on external

repository services rather than
internal mirror

• Projects depended on floating instead
of fixed versions

• Projects were built "too continuously"

• Fine-grained dependencies depended
upon by many other libraries
(cascading)

25

https://en.wikipedia.org/wiki/Npm_left-pad_incident

https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/hacker-infects-node-js-package-
to-steal-from-bitcoin-wallets

https://orca.security/resources/blog/cve-2022-23812-protestware-malicious-code-node-ipc-npm-package

https://en.wikipedia.org/wiki/Npm_left-pad_incident
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/hacker-infects-node-js-package-to-steal-from-bitcoin-wallets
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/hacker-infects-node-js-package-to-steal-from-bitcoin-wallets
https://orca.security/resources/blog/cve-2022-23812-protestware-malicious-code-node-ipc-npm-package/

Vulnerabilities

• CVE: Common Vulnerabilities and Exposures
• Common identifier for specific vulnerabilities (not vulnerable systems)
• CWE: Common Weakness Enumeration (type of vulnerability)
• May be crosslinked with other databases (e.g., severity, product, weakness

category)
• NIST's National Vulnerability Database (NVD) includes common links and history
• Common Vulnerability Scoring System (CVSS) standardizes measures of severity

• Example CVE: https://nvd.nist.gov/vuln/detail/CVE-2025-32955

• Others: https://mvnrepository.com/artifact/org.opencms/opencms-
core/16.0

26

https://nvd.nist.gov/vuln/detail/CVE-2025-32955
https://mvnrepository.com/artifact/org.opencms/opencms-core/16.0
https://mvnrepository.com/artifact/org.opencms/opencms-core/16.0

Reading

• Software Engineering at Google, Chapter 21: Dependency
Management

27

Build systems

28

Build System Objectives

• Automate compilation & linkage of all components

• Rebuild necessary components when things change

• Manage multiple configurations

• Manage external dependencies

• Automate testing

• Automate release actions
• Strip debugging symbols

• Minify web assets

• Generate installers

Also relevant for
interpreted languages

29

Desirable properties of build system

• Fast:
• Run a single command to build and get the output binary in a short time (few

seconds)

• Correct:
• Reproducible: Should output same result for any developer/machine for the

same input files

30

What does a build system even do?

• Why something like javac *.java is not enough?

• How to handle:
• Building libraries stored in different directories (shared libraries)

• Code written in different programming languages (dependencies)

• Third-party jar files (how to store them, version management)

• Rebuilding part of the codebase after dependency upgrade

• Target different systems/release builds (build configs)

• (Implicit dependencies) Managing related artifacts/tasks: documentation,
latest library version

• Write a shell script?

31

Options

• Write your own scripts
• Lots of redundant effort to provide

flexibility and functionality
• Maintenance cost of bespoke system

• Follow conventions
• Easy way for new projects to take

advantage of build tool features with
minimal effort

• Good IDE support
• Hard to adapt for large,

heterogeneous, legacy projects
• Difficult to diagnose implicit rules
• Can lead to bloated dependencies

• Configure a build tool
• Must learn a complicated tool &

configuration syntax
• But knowledge is transferrable

• Must maintain build configuration
• But being explicit is often good, avoids

dependency bloat

• Can accommodate custom
procedures
• Code generation
• Multiple languages

• IDE may require additional
configuration

32

Common build tools

• Make [1976]
• Autoconf
• CMake
• Ant + Ivy, Maven, Gradle (Java)
• sbt (Java, Scala)
• Pip, setuptools (Python)
• npm, Bower (Javascript)
• Cargo (Rust)
• latexmk (LaTeX)
• Bazel

• Responsible for constructing
dependency graph
• Task-oriented: Targets can execute

arbitrary commands
• Hard to correctly specify when a task

does not need to be rerun
• Hard to parallelize safely

• Artifact-oriented: Targets must
declare inputs, outputs
• Enables safe caching, parallelization

33

Task-Based Build Systems

• Task: Fundamental Unit of Work

• Tasks can have other tasks as dependencies

• Major build systems: Ant, Maven, Gradle, Grunt, Rake, …

34

Make example

• Built-in implicit rules
• Knows how to compile .cc files to

get .o file
• Uses standard env vars (CXX,

CXXFLAGS)

• Compiler provides header
dependencies for future use
• But what if a header with the

same name is created elsewhere?

• Does not depend on variable
values (static)

• Use .PHONY to declare tasks that
don't produce artifacts

• First target is default

• Uses timestamp to detect
changes

See scrambler/c++/Makefile

35

Example: Ant Build File
<project name="MyProject" default="dist"
basedir=".">

<description>

simple example build file

</description>

<!-- set global properties for this build -->

<property name="src" location="src"/>

<property name="build" location="build"/>

<property name="dist" location="dist"/>

<target name="init">

<!-- Create the build directory structure used
by compile -->

<mkdir dir="${build}"/>

</target>

<target name="compile" depends="init"

description="compile the source">

<!-- Compile the Java code from ${src} into
${build} -->

<javac srcdir="${src}" destdir="${build}"/>

</target>

<target name="dist" depends="compile"

description="generate the
distribution">

<!-- Create the distribution directory
-->

<mkdir dir="${dist}/lib"/>

<!-- Put everything in ${build} into
the MyProject-${DSTAMP}.jar file -->

<jar jarfile="${dist}/lib/MyProject-
${DSTAMP}.jar" basedir="${build}"/>

</target>

<target name="clean"

description="clean up">

<!-- Delete the ${build} and ${dist}
directory trees -->

<delete dir="${build}"/>

<delete dir="${dist}"/>

</target>

</project>

36

Example: Ant Build File

• “ant [task name]” executes
the given task and its dependent
tasks

• Advantage:
• Modularized builds

• Disadvantages:
• One more file to debug! (tricky)

• Hard to parallelize

• Incremental builds are difficult

37

Artifact-based build system

• Build: Tell the system “what” to build instead of “how”

• Implemented in Blaze/Bazel (Google), Pants, Buck

• Build files are declarative: specify set of artifacts to build, their
dependencies, some build options (instead of exact steps)

• Blaze has full control over “how” build is run

• (Stronger) correctness guarantee while being more efficient

38

Example Bazel BUILD file

java_binary(

name = "MyBinary",

srcs = ["MyBinary.java"],

deps = [":mylib",],)

java_library(

name = "mylib",

srcs = ["MyLibrary.java", "MyHelper.java"],

visibility =
["//java/com/example/myproduct:__subpackage
s__"],

deps = [

"//java/com/example/common",

"//java/com/example/myproduct/otherlib",

"@com_google_common_guava_guava//jar",

],)

• Targets/Artifacts:
java_binary, java_library

• Workspace: Source
hierarchy for artifacts

39

Bazel BUILD Steps

bazel build :MyBinary

• Parse all build files and create graph of artifacts and dependencies

• Determine transitive dependencies of MyBinary

• Build each dependency (in order).
• Start with artifacts with no dependencies.

• Keep track of artifacts that need dependencies to be built

• Build a target as soon as its dependencies are built

• Build final MyBinary executable binary

40

Bazel Advantages/Differences

• Parallelization:
• Targets that only require java compiler (vs custom script)

• Reuse/caching:
• If MyBinary.java changes, it will rebuild MyBinary but reuse mylib

• If a source file for //java/com/example/common changes, Bazel knows to
rebuild that library, mylib, and MyBinary, but reuse
//java/com/example/myproduct/otherlib

41

PollEv.com​/cs5150sp25

Which of the following best describes an advantage of Bazel over
traditional build systems like Make or custom Java build scripts?

A. Bazel always rebuilds the entire project to ensure consistency.
B. Bazel parallelizes tasks using custom shell scripts instead of native
compilers.
C. Bazel tracks fine-grained dependencies, enabling it to rebuild only
what’s necessary and reuse cached outputs.
D. Bazel relies on environment variables for dependency tracking and
compilation.

42

https://pollev.com/cs5150sp25

Other Bazel Features

• Tools as dependencies, toolchains (platform-specific tool usage)

• Custom user-defined actions: specify inputs, outputs, and steps

• Sandboxing: isolating filesystem for each action

• Remote caching

• Distributed build: Remote build

• Making remote/external dependencies deterministic
• Manifest file: Create cryptographic hash for each ext dependency, only

redownload when hash changes, build fails if hash changes

• What can go wrong?

43Read more details in SWE@Google Chapter 18 build systems

Dependency Management @ Google
Scaling to Billions of Lines of Code
• Strict Transitive Dependency:

• A cannot use a symbol for C without declaring direct dependency

• External Dependencies: Uses semantic versioning
• One-Version Rule (eliminates diamond dependency problem)

• Transitive External Dependencies:
• Bazel does not allow automatic download of such dependencies

• Shared cache for external artifacts that require building

• Security/Reliability: Mirroring servers, Vendoring

44

45

	Slide 1: Lecture 24: Build systems and dependencies
	Slide 2: Administrative Reminders
	Slide 3: Previously in 5150…
	Slide 4: Dependencies
	Slide 5: Internal vs. external dependencies
	Slide 6: Where to get dependencies from?
	Slide 7: Dependency Management Practices
	Slide 8: Supply Chain Attack (Example)
	Slide 9: Repository mirrors
	Slide 10: Diamond dependency problem
	Slide 11: Diamond dependency problem
	Slide 12: Dependency management
	Slide 13: Never upgrade (Static Dependency Model)
	Slide 14: Bundled distributions
	Slide 15: Linux Distributions
	Slide 16: Semantic versioning (SemVer)
	Slide 17: Hyrum’s Law
	Slide 18: SemVer works when…
	Slide 19: Minimum Version Selection (MVS)
	Slide 20: PollEv.com​/cs5150sp25: Which version would you upgrade to?
	Slide 21: Compatibility
	Slide 22: Compatibility
	Slide 23: "Live at HEAD"
	Slide 24: "Live at HEAD"
	Slide 25: Dependency vulnerabilities
	Slide 26: Vulnerabilities
	Slide 27: Reading
	Slide 28: Build systems
	Slide 29: Build System Objectives
	Slide 30: Desirable properties of build system
	Slide 31: What does a build system even do?
	Slide 32: Options
	Slide 33: Common build tools
	Slide 34: Task-Based Build Systems
	Slide 35: Make example
	Slide 36: Example: Ant Build File
	Slide 37: Example: Ant Build File
	Slide 38: Artifact-based build system
	Slide 39: Example Bazel BUILD file
	Slide 40: Bazel BUILD Steps
	Slide 41: Bazel Advantages/Differences
	Slide 42: PollEv.com​/cs5150sp25
	Slide 43: Other Bazel Features
	Slide 44: Dependency Management @ Google Scaling to Billions of Lines of Code
	Slide 45

